
Acta Cryst. (1987). A43, 803-809 

Thermal  Dif fuse  Scatter ing  in T ime-of -F l ight  Neutron  Dif fract ion 

BY P. SCHOFIELD 

Theoretical Physics Division, UKAEA Harwell Laboratory, Oxon OX l l 0RA, England 

AND B. T. M. WILLIS 

Chemical Crystallography Laboratory, University of  Oxford, 9 Parks Road, Oxford OX1 3 PD, England 

(Received 17 March 1987; accepted 17 June 1987) 

803 

Abstract and 

The nature of the thermal diffuse scattering (TDS) 
from long-wavelength acoustic modes of vibration in 
a single crystal is examined for time-of-flight neutron 
diffraction. In the neighbourhood of the Bragg reflec- 
tions there may be gaps or 'windows' in the energy 
change of the scattered neutrons, in the wavelengths 
of both incident and scattered radiation, and in the 
total time of flight. TDS is forbidden within these 
windows and rises to a steep maximum at the edges: 
one maximum is due to phonon emission (Stokes 
process) and the other to phonon absorption (anti- 
Stokes). The edges of the windows are determined 
by the sound velocity in the crystal. The sound veloc- 
ity is readily derived, without employing energy 
analysis, by measuring the positions of the edges of 
the time-of-flight window. 

1. Introduction 

In this paper we shall discuss the nature of the thermal 
diffuse scattering (TDS) which is observed close to 
the Bragg reflections in a time-of-flight neutron- 
diffraction experiment on a single crystal. This prob- 
lem has already been examined with geometrical 
arguments linked to the concept of a one-phonon 
scattering surface (Willis, 1986: hereafter paper I). 
We shall adopt a more analytical approach, which 
confirms the results given in paper I and extends these 
to the more realistic case of elastic anisotropy in the 
crystal. Our notation is the same as in the glossary 
of paper I. 

There are two measured parameters in a time-of- 
flight diffraction experiment: total time-of-flight, t, 
and scattering angle, 20. If Lo and Vo are the flight 
path and velocity of the incident neutron, and L and 
v the corresponding quantities for the scattered 
neutron, then 

t=  Lo/vo+ L/v. (1) 

The wave vectors of the incident and scattered 
neutrons are 

ko = koro = ( m,,vo/ h ) rio (2) 
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k =  kfi= (m,v /  h )~, (3) 

where m,, is the neutron mass and rio, fi are unit 
vectors whose scalar product is cos 20. 

The scattered intensity, then, is measured as a func- 
tion of time and scattering angle. In the next section 
we consider the TDS recorded in a detector at a 
scattering angle which is twice the Bragg angle. The 
analysis is extended in subsequent sections to detec- 
tors offset from the Bragg position. 

2. Scattering angle equal to twice the Bragg angle 

The angle between the incident beam ko and the 
reciprocal-lattice vector B is 7r/2 plus the Bragg angle 
0s; see Fig. 1. If the detector is set at twice the Bragg 
angle, it will receive radiation which is Bragg reflected 
for a wave number ks of the incident beam given by 

ks = Inl(2 sin 0s) -~. (4) 

The corresponding neutron velocity is 

v B = ( h / m , )  kB, (5) 

and because Bragg scattering is elastic [i.e. Vo = v in 
(1)] the total time of flight is 

tB = (Lo + L)/vB. (6) 

t m ko---~ 

Fig. 1. Vector diagram for scattering to point Q by a phonon of 
wave vector PQ. O is the origin of reciprocal space and P is 
the reciprocal-lattice point. The scattering angle 20 is twice the 
Bragg angle 0B where sin 0B = IBl/2ks. 
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Let us turn to inelastic diffuse scattering at the 
Bragg angle and consider first the restrictions imposed 
by the conservation of energy and momentum in a 
one-phonon process. Scattering by creation or annihi- 
lation of a phonon of wave vector q and energy 
transfer hto(q) occurs provided that 

q = Akfi - Akofio (7) 

and 

(h2/2m, , ) (k2-k2)=ehro(q) ,  (8) 

with e = +1 for creation (neutron energy loss) and 
e = - 1  for annihilation (energy gain) of a phonon. 
Ak and Ako in the momentum equation (7) are the 
quantities defined by 

Ak = k - ks, Ako = ko -  ks.  (9) 

The energy change on the left-hand side of (8) may 
be expressed, from (5) and (9), as 

AE = - h (  A k -  Ako)[VB +(h/2m,,)(Ako+ Ak)]. 

(10) 

From Fig. 1 we can see that 

q cos ~'= (zako+Ak) sin 08 (11) 

and 

q sin ~" = (Ako -  Ak) cos OB, (12) 

where s r is the angle between the reciprocal-lattice 
vector and the direction of propagation of the 
phonon. Thus (8) becomes 

(sin ~'/cos OB)[VB + (COS ~)hq/(sin 0s)2m,] = eG(q), 

(13) 

in which G(q) [= to(q)/q] is the phase velocity of the 
phonon. If q = 0 in (13), it is impossible to satisfy the 
conditions for one-phonon scattering when 

(G/vs )  cos 08> 1. (14) 

But 

sin Os= A / 2 d = ( h / m , v s ) ( 1 / 2 d ) ,  (15) 

so that (14) can be written as 

d > h/(mnG sin 208) = dmin.  (16) 

Thus there is no TDS close to the Bragg peak if the 
spacing exceeds the value of  dmi, defined in (16). 

Equation (13) can be expressed in terms of the 
measured time of flight as follows. If At represents 
the difference between the flight time for phonon 
scattering, t, and the time for Bragg scattering, tB, we 
find from (1) and (6) that 

A t = t - t ~ = - ( h / m n v ~ ) ( L o A k o  + LAk),  (17) 

where it is assumed in (17) that Ako, Ak are much 
less than kB. If Avo and Av are the differences 

AVo = Vo-- Vm AV = V- -  Vs,  

(17) can be written 

A t = - ( L o A v o  + LAv)/v~.  (18) 

We may use the above expressions to express q, 
zako, Ak in terms of t and s r, and hence obtain a 
relation between the time of flight and the direction 
of those phonons which contribute to the inelastic 
scattering. From (11) and (12) we have 

Ako cos ( 0 s + s  r) =zak cos ( 0 s -  ~'), (19) 

so that (17) can be written 

At = - (  hAko/ rn,v~ ) 

X[Lo+ L c o s ( O s + ~ ) / c o s ( O s - ~ ) ] .  (20) 

From (11) and (13) we obtain 

(sin ~'/cos 08)[ vB + ( h / 2m,)(Ako + Ak) ] = ecs (q) 

o r  

(sin ~'/cos O,){vB + ( hAko/2m,)  

x [ l+cos(OB+~) /cos (Os- -~)]}=eG(q) ,  (21) 

where we have used (19). Elimination of Ako from 
(20) and (21) gives 

[ cos0____~ ] 
½v 2 A t =  v s - e  sins r cs(q) 

( Lo cos ( OB - ~) + L cos ( Os + ~) ) 
X 

cos (08 - ~ )  + cos (0s  + ~) " 
(22) 

Equation (22) is exact provided that At.~ tB, and 
this, in turn, implies that we can neglect phonon 
dispersion and write G(q) as a function of s r only. 
The equation gives the difference, At, between the 
time of flight for one-phonon TDS and the Bragg 
time of flight, as the angle of propagation ~" goes from 
0 to 27r. If vs [equal to (h /2m,) lBl /s in  0s] exceeds 
G(s r) cos 08, the TDS covers a continuous range on 
either side of the Bragg peak at At=0:  we have 
already seen that, if vs is less than cs(s r) cos 0s, there 
is a break in the TDS at At = 0. 

3. General scattering angle 

In the general case the scattering angle 20 is not equal 
to 20s, and we write 

0 = Os + A O, 

where AO is the offset angle of the detector from the 
Bragg setting. New features now appear in the TDS 
which have no counterpart in the special case of 
AO =0. 

Fig. 2 is the diagram for a finite offset which corre- 
sponds to Fig. 1 for a zero offset. If we take the real 
axis of an Argand diagram along the direction of the 
incident beam, all the vectors in Fig. 2 can be rep- 
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resented by complex numbers: 

ko= ks + Ako 

k =  (k s+  Ak)exp(2iO) 

B=- ks[exp(2iOB)- 1] 

q ----- iq exp [ i(0s + ~') ]. 

Momentum conservation for one-phonon scattering 
requires 

k - k o  = B -  eq 

or, from the expressions above, 

Ako-Ak  exp (2i0) = ks[exp (2 i0 ) -  exp (2i0s)] 

+ieqexp[i(Os+K)].  (23) 

Taking real and imaginary parts of (23) gives separate 
expressions for Ako and Ak, 

Ako sin 20 -- - e q  cos (20 - 0s - ~') - ks sin (20 - 2 0 s )  

(24) 

and 

zak sin 20 = - eq  cos (0s + ~') 

-2kss in (O-Os)cos (O+Os) .  (25) 

From (8) and (10) the energy-conservation condi- 
tion may be written 

( a k o -  gk)Evs +(h/2m,,)(~ko + Ak)] = era(q). 

For small energy transfers the second term in square 
brackets may be neglected and this equation reduces 
to (see paper I) 

Ako- Ak = e/3(~)q (26) 

where /3(~') is the phase velocity, cs(ff), divided by 
the neutron velocity, vs. 

We can now establish the conditions for a neutron, 
scattered through an angle 20, to interact with a 
phonon propagating at an angle ~" to the normal to 
the reflecting plane. If we substitute (24) and (25) 
into (26), the magnitude of the phonon wave vector 

~ - 2 0 + o B + ~  r 
2 

Iq -?. p 

x_-- _ ~ -'~-"z~ko ~ gB x,~ ~ "~- 0 
s I ~-_____~ 

Fig. 2. Vector  d i a g r a m  co r re spond ing  to Fig. I bu t  with finite offset 
A0 f rom the Bragg posi t ion.  

will be given by 

2eks sin (0 - 0s)sin 0s 

q sin (0 - 0s - ~') -/3(~') cos 0" 
(27) 

Equations (27), (24) and (25) impose restrictions on 
the ranges of q, Ako and zak and hence on the time 
of flight which are possible in one-phonon scattering. 
In order to discuss the nature of these restrictions, 
we assume, for the remainder of this section, an 
isotropic crystal (which, of course, is rarely found in 
practice), in which/3 is independent of the direction 
of propagation ~'. The effects of anisotropy are dis- 
cussed in § 4. Note also that the neglect of phonon 
dispersion (13 independent of q) limits the discussion 
to small values of q; the apparent divergence due to 
the possible vanishing of the denominator in (27) is 
thus of no consequence. 

( a) Allowed energy transfers 

From (10) the energy loss is 

AE = h( Ako- Ak)vs 

and resubstitution for q in (26) gives the neutron 
energy loss 

4EBSin (0-- OB)fl sin 0s 
AE - (28) 

sin (0 - 0n - K) - /3  cos 0 

(where EB is the energy of Bragg-scattered neutrons, 
h=k2/2m,,). Thus the range of possible energy trans- 
fers, at a given scattering angle 20, is determined by 
the denominator as sin (0 - 0s - ~') varies from -1  to 
+1, or 

-~r /2  < 0 - 0s - ~" < 7r/2. 

Note that we no longer have explicit dependence on 
the parameter e, which specifies phonon creation or 
annihilation; this is now determined by the sign of 
zaE, positive for creation and negative for annihila- 
tion. There are two cases. 

(i) If/3 cos 0 > 1, the denominator in (28) is always 
less than zero. For 0 > 0s only neutron energy gain 
(phonon annihilation) can occur, while for 0 < 0s 
only energy loss occurs, with energy transfers in the 
range 

13 sin 0s zaE /3 sin 0s 

( / 3 c o s 0 ) + l  4Ess in (O-Os )  ( f l c o s 0 ) - l "  
(29) 

This is the case corresponding to low neutron energy 
transfer. 

(ii) If/3 cos 0 < 1, then for 0 >  0s (0 < 0s) energy 
gain (loss) can occur for 

/3 sin 0s 
[AE/4Es sin ( 0 -  0s)l > (30) 

1 +/3 cos 0 
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and energy loss (gain) for 

[AE/4Essin(O-OB)[< /3 sin 0B (31) 
1- /3  cos 0" 

Thus there is a range of energy transfers 

1 A E  1 
< < 

1 + / 3 c o s 0  4Es/3s inOss in(O-08)  1 - / 3 c o s 0 '  

(32) 

or a 'window', where no scattering can occur. 
This is illustrated for 0 > 08 in Fig. 3, where we 

have plotted the two sides of the energy balance 
equation (27), written in the form 

eq sin ( 0 -  0 8 - s  r ) - 2 k B  sin ( 0 -  08) sin 08 

= eflq cos 0. (33) 

The left-hand side gives a 'fan' of possible neutron 
energy transfers as ~" is varied (shown by the coarsely 
hatched area), and the right-hand side gives the 
phonon energy times cos 0. Three orders of a Bragg 
reflection are shown, (a) corresponding to case (i) 
and (b) and (c) to case (ii). The energy windows 
occur in Figs. 3(b) and (c) for AE lying between the 
finely hatched lines. 

( b ) Allowed range of incident and final wave vectors 

A similar argument may be applied to the allowed 
ranges of Ako and Ak. Substituting for q from (27) 
into (24) and (25) respectively, one finds, after some 
algebra, 

Ako sin 0 = - k8  sin (0 - 08) 

cos (0 - 08 - ~') - /3  sin 0 
x cos 08 -1 sin (0 - 08 - ~) -/3 cos 0 sin 08 ] 

(34) 

Energy B 2B 38 

loss in ( 3 5 )  
(e=+l) I / 

j ~ cos 0 ~ I Ak ±= k8 (sin za0/sin 0) 

[~( /32 1)1/2--/32 sin 0 cos 0] 
sin08 

~_I/A-</ ;' ,~-~_ L / ' ~ 4 Z ~  ~"7 (I-~12C0S20) 

I ~ ; }  with the extrema given by 
Energy 
gain I -~ cos"0~x I ~ s i n ( 0 8 + ~ ) = - l / / 3 .  

(~ =-1) 
(a) (b) (c) 

Fig. 3. Diagrams illustrating solution of equation (33) for three 
successive orders. Note that/3 cos 0 exceeds unity in (a) but is 
less than unity in (b) and (c). 

Ak sin 0 = - k a  sin (0 - OB) 

[ c°s ( 0 -  0B-  st) + fl sin 0 sin 0B]. 
x cos 0B-~ sin ( 0 -  0 ~ -  s r) - /3  cos 0 

(35) 

There will be a gap in the possible incident 
wavelengths if Ako has maxima and minima as a 
function of s r. Differentiation of (34) gives the 
necessary condition 

/3 sin ( 2 0 -  0B-st) = 1. (36) 

This equation has the following interpretation. 
Reference to Fig. 2 shows that ( z r / 2 - 2 0 +  OB+~) 

is the angle between the phonon propagation direc- 
tion q and the scattered vector k (angle PQS). 
Equation (36) states that an extremum occurs in Ako 
when the component of the phonon velocity in the 
direction of the scattered neutron is equal to the 
neutron velocity. 

Thus unless the neutron velocity is less than the 
phonon velocity (/3 > 1), there is scattering for all 
values of Ako, with no wavelength w i n d o w - e v e n  
though there is a finite range of possible energy trans- 
fers. However, for f l >  1 there are maximum and 
minimum values of Ako given by (36) with 

c o s ( 2 0 - 0 ~ - ~ ) = ± ( 1 - 1 / / 3 2 )  '/2. (37) 

Substituting for s r given by (36) and (37) into (34) 
gives the extreme values of Ako [with the + referring 
to the positive sign in (37)]: 

Ak~: = k8 (sin A0/sin 0) 

['[:v(/32- 1)1/2+/3 2 sin 0 cos 0] 
x (1 ~ ~ cos 2 0) -sin 08 

- c o s  08} (38) 

where we have now written AO for the offset angle 
(0-08). 

Similarly one finds for the scattered wave vector 

(39) 

(40) 

Returning to Ako, equations (34) and (38), we may 
understand the behaviour in terms of three regions. 

(i) /3 < 1. This corresponds to case (a)(ii), or (b) 
and (c) of Fig. 3, where both energy gain and loss 
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can occur. However, the absence of an extremum in 
Ako indicates that the whole range of Ako can con- 
tribute to both branches of the energy transfer. There 
is therefore no wavelength window. 

(ii) 13 cos 0 < 1 </3. This also corresponds to case 
(a)(ii), Figs. 3(b), (c), but now there is an extremum 
in Ako, that is, a limited range of Ako for both phonon 
creation and annihilation. For AO positive, for 
phonon creation one must have 

ks sin AO r(132_--_1_)I/2 So_s A 0 - s i n  A0] 
Ako> Ak-~ 

smO L s i n 0 - ( 1 3 2 - 1 ) l / 2 c o s O  J '  

(41) 

while for phonon annihilation 

Ako < Ako = 
ks sin AO 

sin 0 

[(132_ 1)1/2 cos AO +sin  ~0 ]  

× L si-  __ ; 
(42) 

and hence there is a window in Ako of width given by 

Ak-~ - Ako -- 2ks sin AO (132_ 1)1/2 sin 0s (43) 
sin 0 (1 _132 cos 2 0) 

and similarly for AO<O. Equations (41) and (42) 
reduce to (36) of paper I for [AO[ ~ 1. 

(iii) 13 cos 0 >  1. This corresponds to (a)(i)  and 
(a) of Fig. 3. Here scattering is only possible over a 
finite range of Ako lying between Ak~. 

This range is given by 

Izak~-- Ako[ = 
2ks Isin AOI(132-1) 1/2 sin 0s 

sin 0(13 2 cos 2 0 - 1) 
(44) 

corresponding to the range of energy transfers in (29). 
Note, however that the edges of the energy range, 
given by sin (AO - ~') = +1, do not correspond to those 
of the wave vector, as defined by (36). This is because 
the limits of AE are fixed by the maximum and 
minimum values of (k 2 - k2), whereas the limits of k0 
are determined by the condition that the scattered 
wave vector just touches the (elliptical) scattering 
surface (see paper I). 

(c) Allowed time of flight 

Finally, for the isotropic case, we consider the 
allowed ranges of time of flight for one-phonon scat- 
tering. The expression for the difference from the 
Bragg time of flight is given by (17) with (34) and (35). 

The first thing to note is that for a diffractometer 
with a short final flight path, L,~ L0, such as the High 
Resolution Powder Diffractometer on the ISIS spalla- 
tion source (Johnson & David, 1985), the difference 
in time of flight is determined by Ako so that the 
discussion in (b) above applies. However, it is useful 

to consider the general case. In doing so, we shall 
initially make the simplification of working only to 
lowest order in AO, by neglecting the difference 
between 0 and 0s in the square brackets in (34) and 
(35). The full generalization is given in § 4. In this 
approximation we may write 

1 At(¢) 
"0(~')- - - - c o t O -  

ts AO 
cos ~ ' - (1-21)13 sin 0 

sin s r + 13 cos 0 
(45) 

for the time of flight involving a phonon propagating 
in the direction ~', where we have written l =  
L/(Lo+ L). zl(~') has extrema when 

13[(1-1) s i n ( O - ¢ ) - l s i n ( O + ¢ ) ] = l  (46) 

[in agreement with (36) and (40), for I = 0, 1]. Solu- 
tions to this equation exist provided 

132[cos2 0 + ( 1 - 2 l )  2 sin 2 0 ] >  1, (47) 

which is equivalent to 

(1/vs)(L  + L 2 + 2LoL cos 2O)'/2> (1/c )(L0 + L). 

Equation (47) thus replaces 13 > 1 as the condition 
for a time-of-flight window to exist for general/ .  This 
condition has a very strange interpretation: in order 
to obtain an 'edge' in the spectrum it is necessary that 
the time taken for the neutron to travel in a direct 
line from the source to the detector be longer than 
would be required for the phonon to travel from the 
source to the sample position and from there to the 
detector! 

The optimum condition for observing edges to the 
scattering is therefore that one or other of the flight 
paths should be as short as possible. 

Fig. 4 illustrates the possible time-of-flight values. 
If we write (45), in an analogous fashion to (33), as 

cos ~'+ ( r - c o t  O) sin ~ 

=13[(1-21)s inO-(r -co tO)cosO]  (48) 

/ 
Fig. 4. Diagram illustrating solutions of equation (48). /3 cos 0 

exceeds unity in (a); (b) and (c) correspond to 13 cos 0< 1 and 
A/3 ~ 1, where A: = (L2+ L2+2Lo L cos 20)/(Lo+ L) 2. The point 
P corresponds to T = cot 0 and PQ = (1 - 2/) tan 0; the lines have 
slopes -/3 cos 0. 
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then we see that as ~ varies from 0 to 2zr, the left-hand 
side, for a given z, lies between the values + [1+  
( z - c o t  0)2] 1/2. In other words, the values of the left- 
hand side for which scattering is possible lie between 
the two sheets of the rectangular hyberbola 

y2 = 1 + ( z - c o t  0) 2. (49) 

Edges occur where y is equal to the right-hand side 
of (48). Thus if/3 cos 0 > 1 [Fig. 4, line (a)] there is 
a band of scattering. If/3 cos 0 < 1 there is a window 
or not [ Fig. 4, lines (b) and (c) respectively] according 
to whether the line cuts the hyperbola. This condition 
is given by (47). Note that if l = ½ (equal flight paths), 
no window can occur. The phonon velocity is given 
in terms of the positions of the edges by 

[1 + ( z - c o t  0)2] 1/2 
/3 = (50) I(1-2/) sin 0 -  ( z - c o t  0) cos 0l" 

When (46) is satisfied, the extreme time-of-flight 
values are given by 

z~: = cot 0 - 
/32(1-2l) cos 0 sin 0+ (A2/32-1) 1/2 

1 -/32 cos  2 0 
(51) 

where A2/32 is the left-hand side of (47). Thus A is 
the ratio of the direct distance from source to detector 
divided by the sum of the path lengths. Following 
the discussion of (b) above, we find that the width 
of the time-of-flight window (/3 cos 0 <  1) or the 
width of the time-of-flight spectrum (/3 cos 0 > 1) is 
given by 

I t + - t - l = 2 t ~ l A O l ( A 2 / 3 2 - 1 ) ' / 2 1 1 - / 3 2 c o s  2 0l. (52) 

Note that 1 enters this expression only in the term A 
in the numerator. 

The time of flight at the centroid of the window is 
given by 

½( t + + t - )  - tB = --tB/tO[/32(1 -- 21 sin 0) -- 1 ] (cot 0) 

x(1- /32cos20)  -~. (53) 

4. Crystal anisotropy 

In the preceding section we have examined the theory 
of the one-phonon diffraction by elastically isotropic 
crystals. This restriction was made in order to seek 
insight into the nature of the 'edges' and 'windows' 
which occur in the scattering. However, if the theory 
is to be applied in a quantitative manner to real 
crystals, then it is necessary to examine the 
anisotropic case, in which one no longer assumes that 
/3(~), the ratio of phonon phase velocity to neutron 
velocity is independent of propagation direction. 

In the following we also remove the restriction of 
small /tO. However, we retain the approximations 
involved in (17) and (26). In this generalization, (45) 

becomes 

z(~') = (1/tB[ At(~')/sin/tO] 1[ 
-s inO cosO~ 

cos (~'-/tO) - (1 - 2/)/3(~) sin Osin O~ ] ,  

J sin (~ - / tO)  +/3(~) cos 0 

(54) 

which may be written analogously to (48) as 

/3-1(~')[sin 0n cos ( ~ ' - A 0 ) +  T sin (~'-/tO)] 

= ( 1 - 2 / )  sin 0B sin 0 -  Tcos 0 (55) 

with 

T = r sin 0 - c o s  0s. (56) 

For a given z, the upper and lower bounds on the 
left-hand side are now given by 

[sin 0B sin ( ~ ' - / t O ) -  T cos (~'-/t0)]/3(~') 

+ [sin 0B cos (~'-/tO) 

+ T sin (if-/t0)]fl '(~')  =0,  (57) 

where the prime indicates differentiation with respect 
to ~'. 

Now the phonon frequency is given by 

t o ( q ) = c ( ~ ) q ,  

so that the group velocity of the phonon, given by 
the gradient of to(q), has components c(~') along the 
direction of q and c'(~') perpendicular to this direc- 
tion. Hence, if a is the angle between the direction 
of group propagation and the phonon wave vector, 
then 

COS O1~ = / 3 ( ~ ) / / 3 g ( ~ )  and sin a =/3'(~)//3~(~), (58) 

where fig is the magnitude of the group velocity 
divided by the neutron velocity: 

/3~(sr ) =/32(st) +/3,2(~.). (59) 

With this substitution, (57) yields 

tan (~'+ a -  A0)= T/sin 0B (60) 

and it follows that the left-hand side of (55) is 
bounded by the values 

Y = +/3~l[sin20B + T2] 1/2. (61) 

Here fig is the group velocity of a phonon whose 
direction of (group) propagation relative to the Bragg 
direction is given by 

st+ ce = 0 -  0B+tan -1 (T/sin 0~). (62) 

Thus, if an edge in the time-of-flight spectrum is 
observed at a particular value of z [or time of flight 
At, given by (54)], then it corresponds to the creation 
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or annihilation of a phonon group of velocity 

[ 1 - 2 r  sin 0 cos OB + r 2 s in  2 0 ]  1/2 

/3g = [(1 - 2l) sin Oo sin 0 + cos On cos 0 - r sin 0 cos O[ 

(63) 
[which reduces to (50) as 0 "  0~]. 

Conversely, the edges of the time-of-flight spectrum 
are given by 

r± = ~ 1  F sin 0 cos 0B 

( 1 - 2 l )  sin 0 cos Off2+ (A2B 2-1) ~/2 sin 0B "] 
1 - f12 COS 2 0 J 

(64) 

as the generalization of (51). In the anisotropic case 
the two edges of the window correspond in general 
to different phonon propagation directions, with 
different group velocities, denoted here by 13±. 

This difference may be illustrated by the special 
case l = 0, AO small. Then, the condition for extrema 
in r(~'), equation (54), becomes 

sin ( 0  - ~ - a )  = 3 ~ 1 ( ~ ) .  ( 6 5 )  

Were fig independent of ~', this would have solutions 

~'+~ = 0 - s i n  -1/3g 1 

~'+ a = ~ +  0+s in  -1 3~ I. 

But these only represent equivalent directions in the 
crystal if 0 = 0 or ~r/2 and only then if the crystal is 
centrosymmetric. Therefore, in general, the two solu- 
tions of (65) (with positive and negative cosine) have 
different solutions both for ~" and for/3. In the case 
of crystal anisotropy, one may determine two values 
of the group velocity at two propagation directions 
from the edges of the window [determined by (63) 
and (62)], but one may not use the width of the 
window. 

5. Concluding remarks 

In a one-phonon neutron scattering experiment 
employing time-of-flight Laue diffraction, gaps or 

'windows' appear in (i) the energy change of the 
neutrons, (ii) the incident and scattered wavelengths, 
and (iii) the total time of flight. We have discussed 
the conditions for these windows to appear and shown 
that, in each case, the edges of the window are deter- 
mined by the sound velocity in the crystal. In the 
absence of energy analysis, the velocity is obtained 
most readily from the edges of the time-of-flight win- 
dow. The theory, which is restricted to acoustic modes 
of long wavelength, has been given for both isotropic 
and anisotropic propagation of sound. 

For the isotropic case we have reproduced the 
results of Willis (1986). The main result of this paper 
has been to generalize the theory to the case of elastic 
anisotropy. The principal effect has been to replace 
the phonon phase velocity by the group velocity in 
expressions determining the positions of edges of 
regions where one-phonon scattering is possible in 
time-of-flight diffraction. These edges correspond to 
phonons whose group velocity and propagation direc- 
tion are determined by the time of flight [(63) and 
(62)]. If /3g cos 0 >  1, the edges bound regions of 
scattering; if/3g cos 0 < 1, then the edges bound win- 
dows where no one-phonon scattering is possible, 
provided that /3g is sufficiently large [greater than 
unity for a spectrometer with one flight path much 
longer than the other or, more generally, as given by 
(47)]. If/3g is less than this value, the scattering is 
continuous. 

Work described in this paper was undertaken as 
part of the Underlying Research Programme of the 
UKAEA. The authors benefited from numerous dis- 
cussions with Dr C. J. Carlile of the Rutherford 
Appleton Laboratory and with Dr C. G. Windsor of 
the Harwell Laboratory. 
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